Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 4(3): 958-973, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559719

RESUMO

PlaF is a membrane-bound phospholipase A1 from Pseudomonas aeruginosa that is involved in remodeling membrane glycerophospholipids (GPLs) and modulating virulence-associated signaling and metabolic pathways. Previously, we identified the role of medium-chain free fatty acids (FFAs) in inhibiting PlaF activity and promoting homodimerization, yet the underlying molecular mechanism remained elusive. Here, we used unbiased and biased molecular dynamics simulations and free energy computations to assess how PlaF interacts with FFAs localized in the water milieu surrounding the bilayer or within the bilayer and how these interactions regulate PlaF activity. Medium-chain FFAs localized in the upper bilayer leaflet can stabilize inactive dimeric PlaF, likely through interactions with charged surface residues, as has been experimentally validated. Potential of mean force (PMF) computations indicate that membrane-bound FFAs may facilitate the activation of monomeric PlaF by lowering the activation barrier for changing into a tilted, active configuration. We estimated that the coupled equilibria of PlaF monomerization-dimerization and tilting at the physiological concentration of PlaF lead to the majority of PlaF forming inactive dimers when in a cell membrane loaded with decanoic acid (C10). This is in agreement with a suggested in vivo product feedback loop and gas chromatography-mass spectrometry profiling results, indicating that PlaF catalyzes the release of C10 from P. aeruginosa membranes. Additionally, we found that C10 in the water milieu can access the catalytic site of active monomeric PlaF, contributing to the competitive component of C10-mediated PlaF inhibition. Our study provides mechanistic insights into how medium-chain FFAs may regulate the activity of PlaF, a potential bacterial drug target.

2.
bioRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464050

RESUMO

How bacterial pathogens exploit host metabolism to promote immune tolerance and persist in infected hosts remains elusive. To achieve this, we show that Pseudomonas aeruginosa (PA), a recalcitrant pathogen, utilizes the quorum sensing (QS) signal 2-aminoacetophenone (2-AA). Here, we unveil how 2-AA-driven immune tolerization causes distinct metabolic perturbations in macrophages' mitochondrial respiration and bioenergetics. We present evidence indicating that these effects stem from a decrease in pyruvate transport into mitochondria. This reduction is attributed to decreased expression of the mitochondrial pyruvate carrier (MPC1), which is mediated by diminished expression and nuclear presence of its transcriptional regulator, estrogen-related nuclear receptor alpha (ERRα). Consequently, ERRα exhibits weakened binding to the MPC1 promoter. This outcome arises from the impaired interaction between ERRα and the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Ultimately, this cascade results in diminished pyruvate influx into mitochondria and consequently reduced ATP production in tolerized macrophages. Exogenously added ATP in infected macrophages restores the transcript levels of MPC1 and ERR-α and enhances cytokine production and intracellular bacterial clearance. Consistent with the in vitro findings, murine infection studies corroborate the 2-AA-mediated long-lasting decrease in ATP and acetyl-CoA and its association with PA persistence, further supporting this QS signaling molecule as the culprit of the host bioenergetic alterations and PA persistence. These findings unveil 2-AA as a modulator of cellular immunometabolism and reveal an unprecedent mechanism of host tolerance to infection involving the PGC-1α/ERRα axis in its influence on MPC1/OXPHOS-dependent energy production and PA clearance. These paradigmatic findings paving the way for developing treatments to bolster resilience to pathogen-induced damage. Given that QS is a common characteristic of prokaryotes, it is likely that 2-AA-like molecules with similar functions may be present in other pathogens.

3.
Plants (Basel) ; 12(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570969

RESUMO

Toxic breakdown products of young Camelina sativa (L.) Crantz, glucosinolates can eliminate microorganisms in the soil. Since microorganisms are essential for phosphate cycling, only insensitive microorganisms with phosphate-solubilizing activity can improve C. sativa's phosphate supply. In this study, 33P-labeled phosphate, inductively coupled plasma mass spectrometry and pot experiments unveiled that not only Trichoderma viride and Pseudomonas laurentiana used as phosphate-solubilizing inoculants, but also intrinsic soil microorganisms, including Penicillium aurantiogriseum, and the assemblies of root-colonizing microorganisms solubilized as well phosphate from apatite, trigger off competitive behavior between the organisms. Driving factors in the competitiveness are plant and microbial secondary metabolites, while glucosinolates of Camelina and their breakdown products are regarded as key compounds that inhibit the pathogen P. aurantiogriseum, but also seem to impede root colonization of T. viride. On the other hand, fungal diketopiperazine combined with glucosinolates is fatal to Camelina. The results may contribute to explain the contradictory effects of phosphate-solubilizing microorganisms when used as biofertilizers. Further studies will elucidate impacts of released secondary metabolites on coexisting microorganisms and plants under different environmental conditions.

4.
J Chem Theory Comput ; 19(8): 2389-2409, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37023001

RESUMO

Maximum entropy methods (MEMs) determine posterior distributions by combining experimental data with prior information. MEMs are frequently used to reconstruct conformational ensembles of molecular systems for experimental information and initial molecular ensembles. We performed time-resolved Förster resonance energy transfer (FRET) experiments to probe the interdye distance distributions of the lipase-specific foldase Lif in the apo state, which likely has highly flexible, disordered, and/or ordered structural elements. Distance distributions estimated from ensembles of molecular dynamics (MD) simulations serve as prior information, and FRET experiments, analyzed within a Bayesian framework to recover distance distributions, are used for optimization. We tested priors obtained by MD with different force fields (FFs) tailored to ordered (FF99SB, FF14SB, and FF19SB) and disordered proteins (IDPSFF and FF99SBdisp). We obtained five substantially different posterior ensembles. As in our FRET experiments the noise is characterized by photon counting statistics, for a validated dye model, MEM can quantify consistencies between experiment and prior or posterior ensembles. However, posterior populations of conformations are uncorrelated to structural similarities for individual structures selected from different prior ensembles. Therefore, we assessed MEM simulating varying priors in synthetic experiments with known target ensembles. We found that (i) the prior and experimental information must be carefully balanced for optimal posterior ensembles to minimize perturbations of populations by overfitting and (ii) only ensemble-integrated quantities like inter-residue distance distributions or density maps can be reliably obtained but not ensembles of atomistic structures. This is because MEM optimizes ensembles but not individual structures. This result for a highly flexible system suggests that structurally varying priors calculated from varying prior ensembles, e.g., generated with different FFs, may serve as an ad hoc estimate for MEM reconstruction robustness.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37054907

RESUMO

Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.


Assuntos
Ferro , Pseudomonas aeruginosa , Ferro/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fosfolipídeos/metabolismo , Proteômica
6.
Front Mol Biosci ; 9: 1026724, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353734

RESUMO

Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 µM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.

7.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536643

RESUMO

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF-mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.


Assuntos
Fosfolipídeos , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Glicerofosfolipídeos/metabolismo , Proteínas de Membrana , Fosfolipases A , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35063652

RESUMO

Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here, we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. At reaction equilibrium, PaPlaB purified from detergent-solubilized membranes of E. coli released fatty acids (FAs) from sn-1 and sn-2 positions of phospholipids at the molar ratio of 51:49. PaPlaB in vitro hydrolyzed P. aeruginosa phospholipids reconstituted in detergent micelles and phospholipids reconstituted in vesicles. Cellular localization studies indicate that PaPlaB is a cell-bound PLA of P. aeruginosa and that it is peripherally bound to both membranes in E. coli, yet the active form was predominantly associated with the cytoplasmic membrane of E. coli. Decreasing the concentration of purified and detergent-stabilized PaPlaB leads to increased enzymatic activity, and at the same time triggers oligomer dissociation. We showed that the free FA profile, biofilm amount and architecture of the wild type and ΔplaB differ. However, it remains to be established how the PLB activity of PaPlaB is regulated by homooligomerisation and how it relates to the phenotype of the P. aeruginosa ΔplaB. This novel putative virulence factor contributes to our understanding of phospholipid degrading enzymes and might provide a target for new therapeutics against P. aeruginosa biofilms.


Assuntos
Lisofosfolipase , Pseudomonas aeruginosa , Biofilmes , Detergentes/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Lisofosfolipase/metabolismo , Fosfolipases/genética , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
9.
J Chem Inf Model ; 61(11): 5626-5643, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34748335

RESUMO

PlaF is a cytoplasmic membrane-bound phospholipase A1 from Pseudomonas aeruginosa that alters the membrane glycerophospholipid (GPL) composition and fosters the virulence of this human pathogen. PlaF activity is regulated by a dimer-to-monomer transition followed by tilting of the monomer in the membrane. However, how substrates reach the active site and how the characteristics of the active site tunnels determine the activity, specificity, and regioselectivity of PlaF for natural GPL substrates have remained elusive. Here, we combined unbiased and biased all-atom molecular dynamics (MD) simulations and configurational free-energy computations to identify access pathways of GPL substrates to the catalytic center of PlaF. Our results map out a distinct tunnel through which substrates access the catalytic center. PlaF variants with bulky tryptophan residues in this tunnel revealed decreased catalysis rates due to tunnel blockage. The MD simulations suggest that GPLs preferably enter the active site with the sn-1 acyl chain first, which agrees with the experimentally demonstrated PLA1 activity of PlaF. We propose that the acyl chain-length specificity of PlaF is determined by the structural features of the access tunnel, which results in favorable free energy of binding of medium-chain GPLs. The suggested egress route conveys fatty acid (FA) products to the dimerization interface and, thus, contributes to understanding the product feedback regulation of PlaF by FA-triggered dimerization. These findings open up opportunities for developing potential PlaF inhibitors, which may act as antibiotics against P. aeruginosa.


Assuntos
Simulação de Dinâmica Molecular , Fosfolipases/química , Pseudomonas aeruginosa , Domínio Catalítico , Dimerização , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
10.
PLoS One ; 16(10): e0258385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648550

RESUMO

The efficacy of antibiotics to treat bacterial infections declines rapidly due to antibiotic resistance. This problem has stimulated the development of novel antibiotics, but most attempts have failed. Consequently, the idea of mining uncharacterized genes of pathogens to identify potential targets for entirely new classes of antibiotics was proposed. Without knowing the biochemical function of a protein, it is difficult to validate its potential for drug targeting; therefore, the functional characterization of bacterial proteins of unknown function must be accelerated. Here, we present a paradigm for comprehensively predicting the biochemical functions of a large set of proteins encoded by hypothetical genes in human pathogens to identify candidate drug targets. A high-throughput approach based on homology modelling with ten templates per target protein was applied to the set of 2103 P. aeruginosa proteins encoded by hypothetical genes. The >21000 homology modelling results obtained and available biological and biochemical information about several thousand templates were scrutinized to predict the function of reliably modelled proteins of unknown function. This approach resulted in assigning one or often multiple putative functions to hundreds of enzymes, ligand-binding proteins and transporters. New biochemical functions were predicted for 41 proteins whose essential or virulence-related roles in P. aeruginosa were already experimentally demonstrated. Eleven of them were shortlisted as promising drug targets that participate in essential pathways (maintaining genome and cell wall integrity), virulence-related processes (adhesion, cell motility, host recognition) or antibiotic resistance, which are general drug targets. These proteins are conserved in other WHO priority pathogens but not in humans; therefore, they represent high-potential targets for preclinical studies. These and many more biochemical functions assigned to uncharacterized proteins of P. aeruginosa, made available as PaPUF database, may guide the design of experimental screening of inhibitors, which is a crucial step towards the validation of the highest-potential targets for the development of novel drugs against P. aeruginosa and other high-priority pathogens.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/antagonistas & inibidores , Modelos Moleculares , Pseudomonas aeruginosa/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos/genética , Genoma Bacteriano , Ligantes , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Virulência/genética
11.
Commun Biol ; 4(1): 132, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514861

RESUMO

The metallo-ß-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-ß-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from ß-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-ß-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-ß-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.


Assuntos
Desulfurococcaceae/enzimologia , Evolução Molecular , beta-Lactamases/metabolismo , Cristalografia , Desulfurococcaceae/genética , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura , beta-Lactamases/química , beta-Lactamases/genética
12.
Sci Rep ; 10(1): 3578, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107397

RESUMO

Folding and cellular localization of many proteins of Gram-negative bacteria rely on a network of chaperones and secretion systems. Among them is the lipase-specific foldase Lif, a membrane-bound steric chaperone that tightly binds (KD = 29 nM) and mediates folding of the lipase LipA, a virulence factor of the pathogenic bacterium P. aeruginosa. Lif consists of five-domains, including a mini domain MD1 essential for LipA folding. However, the molecular mechanism of Lif-assisted LipA folding remains elusive. Here, we show in in vitro experiments using a soluble form of Lif (sLif) that isolated MD1 inhibits sLif-assisted LipA activation. Furthermore, the ability to activate LipA is lost in the variant sLifY99A, in which the evolutionary conserved amino acid Y99 from helix α1 of MD1 is mutated to alanine. This coincides with an approximately three-fold reduced affinity of the variant to LipA together with increased flexibility of sLifY99A in the complex as determined by polarization-resolved fluorescence spectroscopy. We have solved the NMR solution structures of P. aeruginosa MD1 and variant MD1Y99A revealing a similar fold indicating that a structural modification is likely not the reason for the impaired activity of variant sLifY99A. Molecular dynamics simulations of the sLif:LipA complex in connection with rigidity analyses suggest a long-range network of interactions spanning from Y99 of sLif to the active site of LipA, which might be essential for LipA activation. These findings provide important details about the putative mechanism for LipA activation and point to a general mechanism of protein folding by multi-domain steric chaperones.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipase/química , Lipase/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Cinética , Lipase/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
13.
J Comput Chem ; 41(6): 500-512, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31618459

RESUMO

Lipases are essential and widely used biocatalysts. Hence, the production of lipases requires a detailed understanding of the molecular mechanism of its folding and secretion. Lipase A from Pseudomonas aeruginosa, PaLipA, constitutes a prominent example that has additional relevance because of its role as a virulence factor in many diseases. PaLipA requires the assistance of a membrane-integrated steric chaperone, the lipase-specific foldase Lif, to achieve its enzymatically active state. However, the molecular mechanism of how Lif activates its cognate lipase has remained elusive. Here, we show by molecular dynamics simulations at the atomistic level and potential of mean force computations that Lif catalyzes the activation process of PaLipA by structurally stabilizing an intermediate PaLipA conformation, particularly a ß-sheet in the region of residues 17-30, such that the opening of PaLipA's lid domain is facilitated. This opening allows substrate access to PaLipA's catalytic site. A surprising and so far not fully understood aspect of our study is that the open state of PaLipA is unstable compared to the closed one according to our computational and in vitro biochemical results. We thus speculate that further interactions of PaLipA with the Xcp secretion machinery and/or components of the extracellular matrix contribute to the remaining activity of secreted PaLipA. © 2019 Wiley Periodicals, Inc.


Assuntos
Lipase/metabolismo , Chaperonas Moleculares/metabolismo , Pseudomonas aeruginosa/enzimologia , Lipase/química , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 270-277, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950828

RESUMO

The human membrane-bound α/ß-hydrolase domain 6 (ABHD6) protein modulates endocannabinoid signaling, which controls appetite, pain and learning, as well as being linked to Alzheimer's and Parkinson's diseases, through the degradation of the key lipid messenger 2-arachidonylglycerol (2-AG). This makes ABHD6 an attractive therapeutic target that lacks structural information. In order to better understand the molecular mechanism of 2-AG-hydrolyzing enzymes, the PA2949 protein from Pseudomonas aeruginosa, which has 49% sequence similarity to the ABHD6 protein, was cloned, overexpressed, purified and crystallized. Overexpression of PA2949 in the homologous host yielded the membrane-bound enzyme, which was purified in milligram amounts. Besides their sequence similarity, the enzymes both show specificity for the hydrolysis of 2-AG and esters of medium-length fatty acids. PA2949 in the presence of n-octyl ß-D-glucoside showed a higher activity and stability at room temperature than those previously reported for PA2949 overexpressed and purified from Escherichia coli. A suitable expression host and stabilizing detergent were crucial for obtaining crystals, which belonged to the tetragonal space group I4122 and diffracted to a resolution of 2.54 Å. This study provides hints on the functional similarity of ABHD6-like proteins in prokaryotes and eukaryotes, and might guide the structural study of these difficult-to-crystallize proteins.


Assuntos
Esterases/química , Esterases/isolamento & purificação , Monoacilglicerol Lipases/química , Pseudomonas aeruginosa/enzimologia , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Cristalização , Estabilidade Enzimática , Humanos , Cinética , Especificidade por Substrato , Temperatura
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 307-311, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950832

RESUMO

The hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I possesses at least 35 putative genes encoding enzymes that belong to the α/ß-hydrolase superfamily. One of those genes, the metallo-hydrolase-encoding igni18, was cloned and heterologously expressed in Pichia pastoris. The enzyme produced was purified in its catalytically active form. The recombinant enzyme was successfully crystallized and the crystal diffracted to a resolution of 2.3 Å. The crystal belonged to space group R32, with unit-cell parameters a = b = 67.42, c = 253.77 Å, α = ß = 90.0, γ = 120.0°. It is suggested that it contains one monomer of Igni18 within the asymmetric unit.


Assuntos
Clonagem Molecular , Desulfurococcaceae/enzimologia , Expressão Gênica , Hidrolases/química , Hidrolases/isolamento & purificação , Metais/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Hidrolases/genética
16.
Macromol Biosci ; 18(12): e1800337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30408344

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa, often exhibiting multiresistance against conventional antibiotics, expresses the lectin LecB that is suspected to be an important factor during biofilm formation via interactions with cell-surface presented carbohydrate ligands such as the blood group antigens. Therefore, carbohydrate-based ligands interfering with LecB binding have the potential to lead to new anti-biofilm and anti-adhesion therapies. This study explores in vitro binding potencies of glycomimetic ligands containing up to six α-l-fucose ligands on a monodisperse, sequence-controlled oligoamide scaffold interacting with LecB. Surface plasmon resonance (SPR) and a modified enzyme-linked lectin assay (mELLA) revealed an increasing affinity to LecB with increasing fucose valency. Furthermore, fucosylated glycooligomers were shown to inhibit the formation of P. aeruginosa biofilm up to 20%. Overall these results show the potential of fucosylated oligoamides to be further developed as inhibitors of LecB binding and biofilm formation.


Assuntos
Antibacterianos/síntese química , Biofilmes/efeitos dos fármacos , Fucose/química , Lectinas/antagonistas & inibidores , Oligossacarídeos/síntese química , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Sequência de Carboidratos , Glicosilação , Lectinas/química , Lectinas/metabolismo , Ligantes , Oligossacarídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
17.
PLoS One ; 13(7): e0200160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29969500

RESUMO

Land plants are engaged in intricate communities with soil bacteria and fungi indispensable for plant survival and growth. The plant-microbial interactions are largely governed by specific metabolites. We employed a combination of lipid-fingerprinting, enzyme activity assays, high-throughput DNA sequencing and isolation of cultivable microorganisms to uncover the dynamics of the bacterial and fungal community structures in the soil after exposure to isothiocyanates (ITC) obtained from rapeseed glucosinolates. Rapeseed-derived ITCs, including the cyclic, stable goitrin, are secondary metabolites with strong allelopathic affects against other plants, fungi and nematodes, and in addition can represent a health risk for human and animals. However, the effects of ITC application on the different bacterial and fungal organisms in soil are not known in detail. ITCs diminished the diversity of bacteria and fungi. After exposure, only few bacterial taxa of the Gammaproteobacteria, Bacteriodetes and Acidobacteria proliferated while Trichosporon (Zygomycota) dominated the fungal soil community. Many surviving microorganisms in ITC-treated soil where previously shown to harbor plant growth promoting properties. Cultivable fungi and bacteria were isolated from treated soils. A large number of cultivable microbial strains was capable of mobilizing soluble phosphate from insoluble calcium phosphate, and their application to Arabidopsis plants resulted in increased biomass production, thus revealing growth promoting activities. Therefore, inclusion of rapeseed-derived glucosinolates during biofumigation causes losses of microbiota, but also results in enrichment with ITC-tolerant plant microorganisms, a number of which show growth promoting activities, suggesting that Brassicaceae plants can shape soil microbiota community structure favoring bacteria and fungi beneficial for Brassica plants.


Assuntos
Brassica rapa/metabolismo , Glucosinolatos/metabolismo , Microbiota , Microbiologia do Solo , Técnicas de Cultura de Células , Ácidos Cumáricos/metabolismo , Glicosídeo Hidrolases/metabolismo , Microbiota/fisiologia , Oxazolidinonas/metabolismo , Fosfolipídeos/análise , Solo/química
18.
Appl Microbiol Biotechnol ; 101(7): 2865-2878, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27988798

RESUMO

The human pathogenic bacterium Pseudomonas aeruginosa produces rhamnolipids, glycolipids with functions for bacterial motility, biofilm formation, and uptake of hydrophobic substrates. Rhamnolipids represent a chemically heterogeneous group of secondary metabolites composed of one or two rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosynthetic pathway involves rhamnosyltransferase I encoded by the rhlAB operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) followed by their coupling to one rhamnose moiety. The resulting mono-rhamnolipids are converted to di-rhamnolipids in a third reaction catalyzed by the rhamnosyltransferase II RhlC. However, the mechanism behind the biosynthesis of rhamnolipids containing only a single fatty acid is still unknown. To understand the role of proteins involved in rhamnolipid biosynthesis the heterologous expression of rhl-genes in non-pathogenic Pseudomonas putida KT2440 strains was used in this study to circumvent the complex quorum sensing regulation in P. aeruginosa. Our results reveal that RhlA and RhlB are independently involved in rhamnolipid biosynthesis and not in the form of a RhlAB heterodimer complex as it has been previously postulated. Furthermore, we demonstrate that mono-rhamnolipids provided extracellularly as well as HAAs as their precursors are generally taken up into the cell and are subsequently converted to di-rhamnolipids by P. putida and the native host P. aeruginosa. Finally, our results throw light on the biosynthesis of rhamnolipids containing one fatty acid, which occurs by hydrolyzation of typical rhamnolipids containing two fatty acids, valuable for the production of designer rhamnolipids with desired physicochemical properties.


Assuntos
Vias Biossintéticas/genética , Ácidos Graxos/metabolismo , Glicolipídeos/biossíntese , Glicolipídeos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Bactérias/genética , Cromatografia Líquida de Alta Pressão , Decanoatos/metabolismo , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Mutação , Óperon , Pseudomonas aeruginosa/genética , Percepção de Quorum , Ramnose/análogos & derivados , Ramnose/metabolismo , Tensoativos
19.
FEBS Open Bio ; 6(5): 484-93, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27419054

RESUMO

Pseudomonas aeruginosa strain 1001 produces an esterase (EstA) that can hydrolyse the racemic methyl ester of ß-acetylthioisobutyrate to produce the (D)-enantiomer, which serves as a precursor of captopril, a drug used for treatment of hypertension. We show here that PA2949 from P. aeruginosa PA01, a homologue of EstA, can efficiently be expressed in an enzymatically active form in E. coli. The enzyme is membrane-associated as demonstrated by cell fractionation studies. PA2949 was purified to homogeneity after solubilisation with the nonionic detergent, Triton X-100, and was shown to possess a conserved esterase catalytic triad consisting of Ser137-His258-Asp286. Our results should allow the development of an expression and purification strategy to produce this biotechnologically relevant esterase in a pure form with a high yield.

20.
Sci Rep ; 6: 27035, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271534

RESUMO

DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library.


Assuntos
Biofilmes , Microbiologia Ambiental , Consórcios Microbianos/genética , Tensoativos/química , Matadouros , Sequência de Aminoácidos , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Vias Biossintéticas , Escherichia coli/genética , Flavobacterium/genética , Genes Bacterianos , Metagenoma , Testes de Sensibilidade Microbiana , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Tensoativos/metabolismo , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...